The class 4 semaphorin Sema4D promotes the rapid assembly of GABAergic synapses in rodent hippocampus.
نویسندگان
چکیده
Proper circuit function in the mammalian nervous system depends on the precise assembly and development of excitatory and inhibitory synaptic connections between neurons. Through a loss-of-function genetic screen in cultured hippocampal neurons, we previously identified the class 4 Semaphorin Sema4D as being required for proper GABAergic synapse development. Here we demonstrate that Sema4D is sufficient to promote GABAergic synapse formation in rodent hippocampus and investigate the kinetics of this activity. We find that Sema4D treatment of rat hippocampal neurons increases the density of GABAergic synapses as detected by immunocytochemistry within 30 min, much more rapidly than has been previously described for a prosynaptogenic molecule, and show that this effect is dependent on the Sema4D receptor PlexinB1 using PlxnB1(-/-) mice. Live imaging studies reveal that Sema4D elicits a rapid enhancement (within 10 min) in the rate of addition of synaptic proteins. Therefore, we demonstrate that Sema4D, via PlexinB1, acts to initiate synapse formation by recruiting molecules to both the presynaptic and the postsynaptic terminals; these nascent synapses subsequently become fully functional by 2 h after Sema4D treatment. In addition, acute treatment of an organotypic hippocampal slice epilepsy model with Sema4D reveals that Sema4D rapidly and dramatically alters epileptiform activity, which is consistent with a Sema4D-mediated shift in the balance of excitation and inhibition within the circuit. These data demonstrate an ability to quickly assemble GABAergic synapses in response to an appropriate signal and suggest a potential area of exploration for the development of novel antiepileptic drugs.
منابع مشابه
An RNAi-Based Approach Identifies Molecules Required for Glutamatergic and GABAergic Synapse Development
We report the results of a genetic screen to identify molecules important for synapse formation and/or maintenance. siRNAs were used to decrease the expression of candidate genes in neurons, and synapse development was assessed. We surveyed 22 cadherin family members and demonstrated distinct roles for cadherin-11 and cadherin-13 in synapse development. Our screen also revealed roles for the cl...
متن کاملLeptin potentiates GABAergic synaptic transmission in the developing rodent hippocampus
It is becoming increasingly clear that leptin is not only a hormone regulating energy homeostasis but also a neurotrophic factor impacting a number of brain regions, including the hippocampus. Although leptin promotes the development of GABAergic transmission in the hypothalamus, little is known about its action on the GABAergic system in the hippocampus. Here we show that leptin modulates GABA...
متن کاملGene deletion mutants reveal a role for semaphorin receptors of the plexin-B family in mechanisms underlying corticogenesis.
Semaphorins and their receptors, plexins, are emerging as key regulators of various aspects of neural and nonneural development. Semaphorin 4D (Sema4D) and B-type plexins demonstrate distinct expression patterns over critical time windows during the development of the murine neocortex. Here, analysis of mice genetically lacking plexin-B1 or plexin-B2 revealed the significance of Sema4D-plexin-B...
متن کاملSemaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling
The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However,...
متن کاملGABAergic Synapse Dysfunction and Repair in Temporal Lobe Epilepsy
Severe medial temporal lobe epilepsy (mTLE) is often associated with pharmacoresistant seizures, impaired memory and mood disorders. In the hippocampus, GABAergic inhibitory interneuron dysfunction and other neural circuit abnormalities contribute to hyperexcitability, but the mechanisms are still not well understood. Experimental approaches aimed at correcting deficits in hippocampal circuits ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 21 شماره
صفحات -
تاریخ انتشار 2013